Sheet Metal Fabricators – Hot Tips For Welding Flat Rolled Steel

As fabricators acquire experience welding SCS strip steel we discover great news with regards to better weld quality, cost savings on filler wire and, of course, decreases in toxic welding fumes as opposed to welding P&O steel. Still, we sometimes learn of a new user having problems with too much weld spatter while welding the SCS steel. Research show that modest alterations in shielding gas and filler wire feed eradicate excessive spatter and produce larger cost savings on consumables. This write-up offers the foundation of theSCS sheet steel strengths and describes welding practices that permit sheet metal fabricators to enjoy those rewards while steering clear of the excessive spatter.

Consistently Stronger Welds.
Six years ago comparable samples of welded SCS treated steel and Hot rolled pickled and oiled sheets were tested metals testing laboratory. It required an average 580 pounds greater shear load to induce failure in welded SCS treated steel samples than the P&O samples.

SCS treated steel benefit comes from greater weld integrity. A certain amount of weld arc’s energy would go to burning up the oil on Hot band oiled sheets. This brings out even even more contaminants to a Pickled and oiled surface that is already fairly dirty when compared to SCS sheet steel. The net outcome is to lower the integrity of HRPO welds compared to SCS treated steel welds.

That Issue of Excess Spatter.
Most sheet metal fabricators who switched to SCS treated steel reported cleaner, stronger welds with really no spatter. However, a handful noted unacceptable amounts of spatter.

To discover the underlying cause, The Material Works, Ltd. recruited the support of the Illinois Manufacturing Extension Center (IMEC) which provides technical services to companies. IMEC’s project manager partnered with Optimum Engineering Solutions, Inc. to perform controlled welding tests of SCS sheet steel. They duplicated the welding procedures of fabricators who reported excessive spatter and observed similarly undesirable results.

Then they, evaluated adjustments in shielding gas make up and filler wire feed rate. Changing from 90%Argon-10%CO2 to 95%Argon-5%Oxygen enhanced arc stability and greatly decreased spatter. Decreasing wire feed speed worked well with the new gas recipe. Using ER70S-6 filler wire at a slower feed rate with the Argon-Oxygen selection delivered notably better penetration and improved bead appearance when welding at the same speed.

The study discovered that the best parameters for welding SCS sheet steel (or Oiled strip steel for that matter) were different from what these fabricators had been using. A change to the optimized shielding gas and filler wire combination not simply assures exceptional SCS treated steel welding performance, it also provides savings on consumables!

The gas supplier for the analysis sells the Argon-Oxygen mix at five percent under the Argon-CO2 mix. But even bigger savings are realized on filler wire. The more even weld bead you receive with optimized SCS sheet steel parameters translates to less filler material for a given weld joint. Couple that with a lower wire feed rate for the identical welding rate, and the savings in welding wire can reach 30%.

Article Source: http://EzineArticles.com/4042684